Beam Steered AO Deflectors: Phase Calculation between adjacent RF Channels

The formula for determining exact phase matching in a longitudinal mode beam steered AOM is (in radians):

$$
\varphi(f)=\pi \cdot\left[\frac{D \cdot \lambda o \cdot 10^{-3}}{v a^{2} \cdot n o} \cdot f^{2} \cdot\left(1-\frac{f 1}{f}\right)\right]
$$

D	distance between electrodes (mm)
no	refractive index
f	frequency (MHz)
f1	frequency at desired center*
$\lambda 0$	free space wavelength (nm)
va	acoustic velocity $(\mathrm{m} / \mathrm{s})$

This the same regardless of the number of electrodes.

When $\phi(\mathrm{f})$ is positive, the arrangement is
and when negative,

* $f 1$ is typically the device centre frequency, Fc.

Alternatively for near balanced + and - phase values over the bandwidth, set the desired centre $\mathrm{f} 1=\mathrm{fc} \mathrm{ff}^{\wedge} 2 /(\mathrm{fmin} * \mathrm{fmax})$, where $\mathrm{fmax}-\mathrm{fmin}=$ scan bandwidth .

Examples:

1: D1384-aQ120- (Quartz AOD, $F c=120 \mathrm{MHz}, \mathrm{BW}=40 \mathrm{MHz}$),
$\mathrm{D}=5.5 \mathrm{~mm}$, no $=1.55, \mathrm{va}=5.72 \mathrm{~mm} / \mu \mathrm{second}$
$\mathrm{f} 1=123 \mathrm{MHz}$ (for balanced phase)
$\lambda \mathrm{o}=355 \mathrm{~nm}$
A plot of phase in degrees versus frequency is shown below

2: D1086-T110- or D1135-T110- (TeO2 AOD, Fc $=110 \mathrm{MHz}, \mathrm{BW}=50 \mathrm{MHz})$,
$\mathrm{D}=6 \mathrm{~mm}$, no $=2.2, \mathrm{va}=4.2 \mathrm{~mm} / \mu \mathrm{second}$
$\mathrm{f} 1=116 \mathrm{MHz}$ (for balanced phase)
$\lambda \mathrm{o}=1064 \mathrm{~nm}$
A plot of phase in degrees versus frequency is shown below

